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The study of granular materials has always been a topic of considerable importance in
engineering. Historically, the mathematical formulation of the subject dates back to the
pioneering work of C.A. Coulomb in 1776 [1]. In his now famous memoir, Coulomb
postulated the conditions that should be satisfied for failure to occur in a granular mate-
rial. This postulate for failure still stands as a defining point in the mathematical study of
mechanics of granular materials. Coulomb largely focused on a topic of importance to that
time, namely the design of earth structures to avoid collapse. As a result, the study of the
deformations that lead to failure received less emphasis [2]. Recently, however, several sci-
entific disciplines, including geomechanics, mechanical, civil and chemical engineering, phys-
ics and applied mathematics, have shown renewed interest in accurately modelling granular
materials to examine, concurrently, both failure and deformations. The study of how gran-
ular materials or bulk solids flow and deform is also of practical importance for a num-
ber of industries, including mining and minerals processing, agricultural materials processing,
the construction industry, foodstuff production, pharmaceutical development and nanotech-
nology. In these applications the granular materials involved could be as diverse as crushed
ore, cereal grains, sugar, flour, tablets and nano-particulates. In each case, granular materials
frequently flow through devices such as bins, hoppers and chutes and a clear knowledge of
how they behave under these circumstances is invaluable for the efficient design and applica-
tion of related devices.

Granular materials form an important component in modern developments in geomechan-
ics. For the most part, geotechnical engineers are less interested in fully developed granular
flows, but the deformational aspects of granular materials are highly relevant in situations
that require assessment of settlements of foundations on granular media. The development of
mathematically correct and physically admissible theories to describe and predict the complex
behaviour of granular materials or bulk solids is therefore a topic of fundamental importance
to both the engineering sciences and applied mathematics.

Modelling the flow of granular materials has been extensively studied through the use of
continuum mechanics. Using this approach, one formulates governing equations for the stress
and velocity fields by coupling the equations of conservation of mass and linear momentum
with appropriate constitutive laws that govern the initiation of failure and the rules applica-
ble to the flow of the granular material subsequent to its failure. For rapid granular flows
that accompany a reduction in the bulk density, the behaviour of each granular particle is
determined primarily by inelastic collisions with neighbouring particles, in a way analogous
to colliding molecules in dense gases. In contrast, for slow dense granular flows, the dominant



2 J.M. Hill and A.P.S. Selvadurai

mechanisms are quite different; here, the neighbouring particles continually slide and roll past
each other, and friction between these particles becomes the dominant force.

The problem of modelling fully developed slow granular flows using continuum mechanics
is, and continues to be, both complex and challenging. There is general agreement that stress
fields within granular flows can be described by coupling the equations of linear momen-
tum with the Coulomb–Mohr yield condition, or other forms of yield condition applicable
to the myriad of granular materials that are encountered in engineering practice. However,
there is little or no agreement as to how the equations for the velocity fields, that describe the
deformations of fully developed flows, should be formulated, or even whether these equations
should be mathematically well-posed or ill-posed. The constitutive assumption that is perhaps
most widely employed by the engineering community is Saint-Venant’s hypothesis, which is
also referred to as the coaxiality condition. This condition states that the principal axes of
the stress and strain-rate tensors should coincide. Drucker and Prager [3] were the first to for-
mally adopt this hypothesis for the study of the mechanics of granular materials. They used
the Coulomb–Mohr yield condition as a plastic potential to derive an associated flow rule.
The condition of coaxiality must hold by virtue of material isotropy, and the rate-of-strain
tensor depends only on the Cauchy stress tensor.

While the work of Drucker and Prager [3] marks the resurgence of the application of
plasticity theories to mechanics of soils, these developments have limitations. Firstly, the the-
ory predicts that all granular flows are accompanied by dilation or volume change, notably
volume expansion, whereas in fact loose granular materials contract upon shearing, and oth-
ers undergo isochoric or volume-preserving deformations. Even in situations for which dila-
tion is appropriate, the predicted magnitude of volume increases is far in excess of those
observed in most real materials. The second limitation is that for cohesionless materials;
the theory predicts that the rate of specific mechanical energy dissipation is zero, which is
clearly unrealistic. More sophisticated approaches attempt to overcome these difficulties by
either including work-hardening/softening theories, similar to those proposed and developed
by Drucker et al. [4], Jenike and Shield [5], Schofield and Wroth [6] or the incorporation
of flow rules that are non-associated. In the former category of models, the yield condition
varies with a state parameter, such as the density. For the work-hardening/softening models,
the mathematical characteristics for the stress and velocity fields do not coincide, contrary to
what is commonly observed experimentally; this leads to the adoption of non-associated flow
rules. The subject matter in this area is extensive and no attempt will be made to provide an
exhaustive review of non-associated plasticity. It is worth noting that Hill [7] proposed veloc-
ity equations for incompressible materials based on the Saint-Venant hypothesis, but, again,
this theory has the undesirable property that the predicted stress and velocity characteristics
do not coincide.

By abandoning the assumption of coaxiality, an alternative family of models has been
derived based on a kinematic hypothesis involving the concepts of shearing motion paral-
lel to a surface, rotation of that surface, and dilation or contraction normal to the sur-
face. One such model is the double-shearing theory, originally proposed by Spencer [8, 9] for
incompressible flows, and extended to dilatant materials by Mehrabadi and Cowin [10] and
Butterfield and Harkness [11]. In this theory, the characteristic curves for the stresses and
velocities coincide, and every deformation is assumed to consist of simultaneous shears along
the two families of stress characteristics. These ideas build upon those of the double sliding,
free rotating model, developed by de Josselin de Jong [12–14], by fixing the rotation rate as
the temporal rate of change of the stress angle. To reiterate, an important advantage of the
double-shearing theory over the previous coaxial theories is that it retains the assumption of
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slip occurring along the stress characteristics, but does not give rise to unusually high levels
of dilatancy. Spencer’s [8, 9] original double-shearing theory is for incompressible materials,
which in the context of fully developed granular flow is often a reasonable and a realistic
assumption. Furthermore, when applied to gravity-driven flow problems [15, 16], the coaxial
theory is shown to yield physically unacceptable predictions in the velocity field, whereas the
double-shearing theory predicts results that are certainly reasonable. On the other hand, there
are experiments, which are not consistent with predictions of Spencer’s double-shearing the-
ory, but tend to support the double-sliding, free-rotating model of de Josselin de Jong [12–14].
Research in this area must recognize the fact that there is little possibility for developing a
mathematical theory of granular media for all eventualities: the materials are real and the cir-
cumstances diverse. A theory that shows promise for a given set of experimental conditions
can fail for others. In any event, at this moment no single theory is clearly most applicable for
describing the behaviour of fully developed flow of real granular materials. While the subject
requires more reproducible non-conventional experiments to help resolve these issues, there is
a serious need for in-depth mathematical and numerical analysis of the theories involved. This
might include the solution of relevant boundary-value problems and initial-boundary-value
problems that can allow the continuous transformation of a deformation-dominated process
to a flow-dominated one, the exploration of exact and numerical solutions to the equations,
and the comparison and contrasting of existing theories that will guide critical experiments of
the future.

In addition to the issues raised above, a major unresolved question with Spencer’s [8, 9]
double-shearing theory, and most other plasticity-based theories for fully developed granu-
lar flow, is that the equations are linearly ill-posed in the sense that small perturbations to
existing solutions may result in solutions that grow exponentially with time (see e.g. [17–
19]). This characteristic places doubt on whether or not steady solutions to the governing
equations actually describe real granular flows, and also leads to serious implications for
numerical schemes, which do not converge in the limit as the size of a mesh discretization
approaches zero. However, ill-posedness in itself is not necessarily an undesirable property for
equations that describe granular deformations. In fact, it is well known that under certain
circumstances granular materials exhibit unstable behaviour, in which case it is quite plau-
sible that ill-posedness should be the norm. An example is the onset of shear-banding. Per-
haps the ideal situation, as advocated by Harris [19], is a theory that contains a domain of
well-posedness, in which solutions may be stable or unstable, and also a domain of ill-posed-
ness, which corresponds to a definite physical instability. This motivation has led Harris [20,
21] to derive a single-slip model, which belongs to the class of models based upon the physi-
cal and kinematic considerations discussed above. This single-slip model is indeed well-posed
under well-defined conditions and ill-posed when these conditions fail [19]. In this case the ill-
posedness corresponds to the physical instability of grain separation, a process that invalidates
the assumption that friction between particles is the dominant mode of momentum transfer,
as opposed to inelastic collisions. There is much scope for further research in this complex
and challenging field.

We note that there have been several recent attempts to model the transitional region
between dense, slow granular flows and rapid, collisional flows (see, for example, [22–25].
These models combine traditional plasticity ideas with notions borrowed from the kinetic
theory of gases [26]. In general, the condition of coaxiality is enforced, and again it is not
entirely clear whether these theories are well-posed or ill-posed. Often in fully developed slow
granular flow, there are narrow layers, referred to as shear layers, in which the material experi-
ences intense shearing. While the models mentioned previously capture many features of fully



4 J.M. Hill and A.P.S. Selvadurai

developed flow to varying degrees, none have the ability to accurately predict the thickness
of the layers over which such intense shearing materializes. A reason for this limitation has
been attributed to the fact that classical continuum models have no intrinsic length scale built
into the constitutive equations. Attempts to rectify this deficiency probably date back to the
work of Voigt [27] and later expanded by Cosserat and Cosserat [28] who introduced the con-
cept of couple stresses for examining the mechanics of deformable media (see e.g. [29]). Here,
the Cauchy stress tensor is no longer symmetric, and the conservation of angular momentum
is no longer automatically satisfied but becomes a set of field equations that need to be sat-
isfied explicitly. There are two extra field variables for Cosserat materials, namely the angu-
lar velocity and the couple-stress tensor. As a consequence of the notion of couple stresses, a
length parameter or an intrinsic length scale naturally arises in the definition of constitutive
relationships. The work on both micromorphic and couple-stress theories was an active area
of research from the mid-1960s to the mid-1970s and the developments are summarized in
[30]. A number of authors have applied these concepts to the examination of problems associ-
ated with granular media and references to recent works are given by Vardoulakis and Sulem
[31]. The investigations by Mühlhaus [32], Tejchman and Wu [33], Bauer [34], Tejchman and
Bauer [35], Tejchman and Gudehus [36] and others also deal with the application of higher-
order formulations in elastoplasticity, in the context of the theory of hypoplasticity, which is
described below, and by Mohan et al. [37, 38] who use more traditional ideas from plastic-
ity. In each case, this improvement is achieved by modelling the granular material as a Coss-
erat (or micropolar) continuum. Mohan et al. [37, 38] apply an extended-associated flow rule,
with the yield condition depending on the bulk density, and apply the equations to model
flow through vertical channels and cylindrical Couette flow. These studies are successful in
that they predict the main qualitative features of the shear layers; however, the yield condition
and flow rule were chosen purely for illustrating the effectiveness of this approach.

In many civil and geotechnical engineering applications the constrained response of a
granular material, such as a soil or sand, under loading is most important [29]. Exam-
ples of such situations occur with the analysis of foundations, excavations and underground
structures, or simply in elemental tests. Here, the deformation of the material is contained by
a surrounding material, which prevents the development of a state of plastic flow or collapse.
Traditionally, a variety of elastoplastic models have been applied to problems of this nature.
The history of development of theories of geomaterial behaviour that account for contained
deformations of granular materials is quite extensive, and no attempt will be made here to
provide an all-encompassing review. More recently, however, the constitutive theory of hypo-
plasticity has been developed, and has proven to be an attractive alternative to the elastoplas-
tic models. Hypoplasticity is a natural extension of the theories of hypoelasticity developed
by Truesdell [40] and the connection between the theories of hypoelasticity and theories of
plasticity and of elastic-plastic flow has been discussed and investigated by Green [41, 42],
Truesdell and Noll [43] and Jaunzemis [44]. Hypoplasticity in a formal sense was extensively
investigated by Kolymbas [45] and many co-workers (see [46–48]). The characterizing feature
of all hypoplastic theories is that the constitutive law can be written in a single nonlinear
tensorial equation for the stress-rate as a function of the stress and the rate-of-deformation
tensor, without reference to a yield condition or a flow rule. With hypoplasticity there is no
need to decompose deformations into elastic and plastic regimes a priori, or to distinguish
between loading and unloading; all these notions are automatically built into the theory, and
arise as a consequence. Excellent reviews of hypoplasticity and its development are contained
in Kolymbas [49] and Wu and Kolymbas [50].
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The popularity of hypoplasticity among researchers and practitioners can be attributed to
its elegance and the fact that the theory is deeply rooted in experimental observations. It is,
nonetheless, a sophisticated constitutive theory, which involves complicated nonlinear constit-
utive relationships. When combined with the governing equations of continuum mechanics,
there are little prospects for the analytical solution of real-life boundary-value problems, and
progress is usually made via numerical schemes. As a result, it is often difficult to grasp the
underlying mathematical structure of the equations (see [51–54]).

As mentioned previously, for each particular hypoplastic law there is a yield surface and
a flow rule, but rather than being assigned in advance, they are consequences of the origi-
nal constitutive relationships. Thus hypoplasticity as a theory can, in principle, be used to
model fully developed granular flow. The explicit equations describing the yield condition
and the flow rule can be derived from the given hypoplastic law, as illustrated by Wu and
Niemunis [55] and von Wolffersdorff [56]. Von Wolffersdorff [56] has derived particular hypo-
plastic models that give the yield surfaces of Drucker and Prager [3] and Matsuoka and
Nakai [57] as limiting cases. It is not immediately clear whether a similar derivation can be
made to link hypoplasticity with other plasticity theories such as the double-shearing the-
ory [8–10] described above. This possibility is of considerable interest, especially in light of
the recent work of Spencer [58], who shows that in a strict sense, the double-shearing theory
can be regarded as a special form of hypoplasticity. There is an absence of understanding of
the strict connection between hypoplasticity and theories of plasticity that describe granular
flow.

Shear layers often occur in the vicinity of solid boundaries, but this is not generally
the case. An important property of granular materials is that shear-banding or shear lay-
ers can also occur within the bulk of the material. Shear bands are usually accompanied
by localised strains, spanning several grain diameters in thickness, and as discussed above,
classical continuum approaches fail to account for the dimensions of the shear bands due
to the absence of an intrinsic length-scale. Furthermore, although the onset of shear-band-
ing can be predicted [59], the ill-posedness of the governing equations prevents a complete
analysis. As discussed previously, the subject of layers with intense shearing or shear-band-
ing has received much attention by investigators who have developed approaches that incor-
porate Cosserat-type effects, and this is most prominent in hypoplasticity (see e.g. [34–36,
60]). Various hypoplastic theories have been developed and validated using finite-element tech-
niques. The topic of mechanics and mathematics of granular materials has a rich history of
involvement of researchers in the engineering sciences as well as those in the mechanics and
applied-mathematics communities. These contributions are too numerous to cite as a compre-
hensive and complete review; readers are referred to the following Edited volumes of Sympo-
sia and Conference Proceedings for more in-depth reviews of the historical developments and
the current state of advanced mathematical and mechanics approaches to the study of gran-
ular materials [61–78].

This Special Issue on the Mathematics and Mechanics of Granular Materials presents a
mix of mathematical and engineering contributions to the discipline. Some of the papers, but
not all, originate from four Mini-Symposia held at the 2003 ICIAM (International Congress
of Industrial and Applied Mathematics) in Sydney, Australia, June 7–11, 2003. This meet-
ing was jointly organised by the Guest Editors together with Drs. Claudio Tamagnini and
Antoinette Tordesillas. The papers presented in this Special Issue cover the full range of cur-
rent research activity in the area, and include general, analytical, hypoplastic, numerical and
engineering contributions, but appear as follows according to the alphabetical listing of the
first-named author:
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1. F. Alonso-Marroquin and H.J. Herrmann, Investigation of the incremental response of
soils using a discrete element model.

2. E. Bauer, Initial response of a micro-polar hypoplastic material under plane shearing.
3. R. Chambon, Some general results about second order work, uniqueness, existence and

controllability.
4. G.M. Cox, S.W. McCue, N. Thamwattana and J. M. Hill, Perturbation solutions for flow

through symmetrical hoppers with inserts and asymmetrical wedge hoppers.
5. B.S. Gardiner and A. Tordesillas, Micromechanical constitutive modelling of granular

media: evolution and loss of contact in particle clusters.
6. D. Harris and E.F. Grekova, A hyperbolic well-posed model for the flow of granular

materials.
7. S.C. Hendy, Towards a theory of granular plasticity.
8. M. Hjiaj, W. Huang, K. Krabbenhoft and S.W. Sloan, Formulation of non-standard dis-

sipative behaviour of geomaterials.
9. W. Huang, M. Hjiaj and S.W. Sloan, Bifurcation analysis for shear localization in non-

polar and micro-polar hypoplastic continua.
10. V.A. Osinov, Large-strain dynamic cavity expansion in a granular material.
11. E. Pasternak and H.-B. Muhlhaus, Generalised homogenisation procedures for granular

materials.
12. J.F. Peters, Some fundamental aspects of the continuumization problem in granular

media.
13. A.J.M. Spencer, Compression and shear of a layer of granular material.
14. C. Tamagnini, F. Calvetti and G. Viggiani, An assessment of plasticity theories for mod-

elling the incrementally non–linear behavior of granular soils.
15. G.J. Weir, Incompressible granular flow from wedge-shaped hoppers.
16. H.P. Zhu and A.B. Yu, Micromechanics modeling and analysis of unsteady state granular

flow in a cylindrical hopper.
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